
DOUBLE SUSPENSION TYPE AD-C

Art. No.	Туре	K = 2	G K = 3	K = 4	n _{err}	SW	Cd	А	В	С	D	E	Weight in kg
07 101 001	AD-C 18	150	120	100	640	17	22	100	50	2.5	55	13 -0.2 16 +0.5 16 +0.3	0.84
07 101 002 07 101 003	AD-C 27 AD-C 38	300 600	240 500	200 400	590 510	21 28	32 45	120 160	60 80	2.5 5	65 90	20 + 0.5	1.84 4.09
07 101 004	\triangle AD-C 45	1200	1000	800	450	35	50	200	100	5	110	24 +0.2	6.08

G = max. loading in N per suspension

K = oscillating machine factor

 n_{err} = max. frequency in min⁻¹ at $< 10^{\circ}$, from zero $< \pm 5^{\circ}$

sw = max. amplitude in mm

 c_d = dynamic spring value in N/mm at $\not = \pm 5^\circ$, in frequency range 300 – 600 min⁻¹

Suspensions for higher loads or asymmetric distances between centres A available on request

△ available on request

Material Structure

Rocker arm made out of welded steel structure; inner square in light alloy profile.

Typical Calculation

Given:

Weight of trough = 200 kgWeight of counter mass = 200 kgMaterial on trough 50 kg of this 20% coupling effect 10 kg Total weight of oscillating mass m (trough, counter mass and coupling effect) = 410 kgEccentric radius R = 14 mm $= 360 \text{ min}^{-1}$ Speed nerr Ocillating machine factor $K = \frac{\left(\frac{2\pi}{60} \cdot n_{err}\right)^2 \cdot R}{9810}$ Total spring value $c_t = m \cdot \left(\frac{2\pi}{60} \cdot n_{err}\right)^2 \cdot 0.001$ = 582.7 N/mm

Wanted:

Number of double rocker suspensions of size 38 for example

a) in resonance operation

Here the total spring value of the suspensions must be about 10 % above the total spring value c_t of the installation. From this follows: Spring value c_d of the rocker suspension AD 38 = 45 N/mm

Number of suspensions
$$z = \frac{c_t}{0.9 \cdot c_d} = \frac{582.7}{0.9 \cdot 45} = 14.4$$
 pieces

Selected: 14 of AD-P 38 or AD-C 38

b) without resonance operation

Here the total weight G must be taken up by the total number of rocker suspensions. The oscillating machine factor K = 2.0 must be taken into account, also the admissible loading of one AD 38 under acceleration $2\,g=600\,N$

Number of suspensions
$$z = \frac{m \cdot g}{G} = \frac{410 \cdot 9.81}{600} = 6.7$$
 pieces

Selected: 8 of AD-P 38 or AD-C 38

