Selection table for guided systems (crank driven)

71.00	15 /5 GE]	CATA!		
One mass shaker "brute-force" system	One mass shaker "natural frequency" system	Two mass shaker "fast-runner" system with reaction force-compensation		
Single Rocker with adjustable l Models with right-hand and le 7 sizes up to 5'000 N per roc	ft-hand threads.		AU Page 2.25	
Single Rocker with decided cer 6 sizes up to 2'500 N for flan 6 sizes up to 2'500 N for cent	ge fixation.		AS-P AS-C Page 2.26	
		Double Rocker with decided center distance. 5 sizes up to 2'500 N for flange fixation. 4 sizes up to 1'600 N for central fixation.	AD-P AD-C Page 2.27	
Single Rocker with adjustable I Models with right-hand and le 7 sizes up to 5'000 N per rock	ft-hand threads.		AR Page 2.28	
Drive Head for crank drive trange Models with right-hand and less are sizes up to 27'000 N per dr			ST Page 2.29	0
	DO-A Page 2.30			

Notes regarding some special shaker systems:

- For free oscillating systems on pages 2.16-2.19
- For guided systems on pages 2.31 2.33
- For gyratory sifters on page 2.34

Technology

1. One mass systems without spring accumulators: Calculation

	Subject	Symbol	Example
Length, weight	Trough length Weight empty trough Weight of feeding material Material coupling factor 50% * Weight of oscillating mass *	$L \\ m_0 \\ \\ m_m \\ \\ m = m_0 + m_m \\$	2.5 m 200 kg 50 kg 25 kg 225 kg
Drive parameter	Eccentric radius Stroke Rpm on trough Gravity acceleration Oscillating machine factor Acceleration Total spring value of system	R $sw = 2 \cdot R$ n_s g K $\alpha = K \cdot g$ c_t	12 mm 24 mm 340 min ⁻¹ 9.81 m/s ² 1.6 1.6 g 285 N/mm
Rocker arms	Distance between rockers max. Quantity of rockers Load per rocker Selection osc. elements (e. g.) Selection ROSTA-elements: A Center distance of elements	L _{max} z G U, AR, AS-P, AS-C A	1.5 m 6 368 N 12× AU 27 200 mm
Drive	Acceleration force Selection drive head Drive capacity approx.	F P	3423 N 1× ST 45 1.0 kW
Spring value	Dynamic torque Dynamic spring value per rocker Dynamic spring value of all rockers Resonant ability factor	Md_d c_d $z \cdot c_d$ i	2.6 Nm/° 7.4 N/mm 44.7 N/mm 0.16

Calculation formulas

Oscillating machine factor

$$K = \frac{\left(\frac{2\pi}{60} \cdot n_s\right)^2 \cdot R}{g \cdot 1000} = \frac{n_s^2 \cdot R}{894'500}$$

Total spring value (machine)

$$C_t = m \cdot \left(\frac{2\pi}{60} \cdot n_s\right)^2 \cdot 0.001$$

Quantity of rockers

$$z = \text{round up} \left(\frac{L}{L_{\text{max}}} + 1\right) \cdot 2$$

Load per rocker

$$G = \frac{m \cdot g}{z}$$

Acceleration force (ST selection)

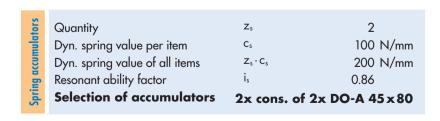
$$F = m \cdot R \cdot \left(\frac{2\pi}{60} \cdot n_s\right)^2 \cdot 0.001 = c_1 \cdot R$$

Drive capacity approx.

$$P = \frac{F \cdot R \cdot n_s}{9550 \cdot 1000 \cdot \sqrt{2}}$$

Dynamic spring value per rocker

$$c_d = \frac{Md_d \cdot 360 \cdot 1000}{A^2 \cdot \pi}$$


Resonant ability factor

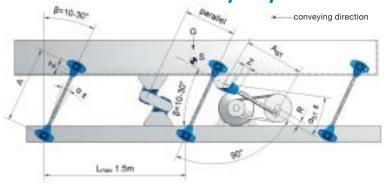
$$i = \frac{z \cdot c_d}{c_t}$$

- * the following factors have to be considered by the definition of the material coupling:
 - high coupling factor or sticking of wet and humid material
 - possible stemming of the trough

2. One mass system with spring accumulators: Calculation

Calculation analog chapter 1 with following additions:

Resonant ability factor with accumulators


$$i_s = \frac{z \cdot c_d + z_s \cdot c_s}{c_t}$$

By a resonant ability factor i_s ≥0.8 the system is usually titled "natural frequency shaker".

Technology

3. One mass shaker conveyor systems: Installation instructions

Distance between rockers L_{max}:

- Usually, the distance between the rocker arms on the trough alongside is up to 1.5 meters, depending on the stiffness of the trough.
- By trough widths >1.5 m we do recommend to provide the trough bottom side with a third, centrical row of rocker arms for stability reasons.

Mounting position drive head ST:

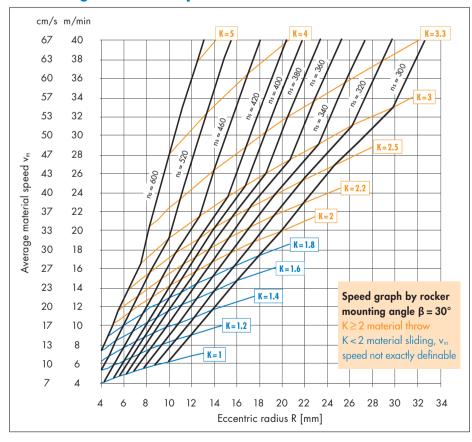
For one mass shaker systems it is recommendable to position the drive head slightly ahead of the center of gravity of the trough, towards the discharge end.

Rocker mounting angle 8:

According to the relevant processing function of the shaker conveyor, the rocker arms are positioned at mounting angles between 10° to 30° in relation to the perpendicular line. (The ideal combination of fast conveying speed with high material throw is given by a rocker inclination angle of 30°.) The power input position of the drive-rod from the eccentric drive should stay at right angles to the rocker arms, this orthogonal positioning offers a harmonic course of the drive system.

Angle of oscillation a:

The machine parameters, angle of oscillation and revolutions should be determined in the admissible area of operations (see chapter 5).


Screw quality:

The screw quality should be grade 8.8 secured by the required tightening moment.

Depth of thread engagement Z:

The depth of engagement should be at least 1.5 x the thread nominal width.

4. Average material speed on shakers v_m

Main influence factors

- layer height of material
- property trough bottom (slipresistance)
- mounting angle β of the rockers
- feeding capability of the material depending on size, form and humidity of the grains, e.g. very dry and fine grained material is submitted to slippage factors up to 30%.

Example: One mass system with eccentric drive

Out of the intersection point

R = 12 mm and the revolutions

n_s = 340 min⁻¹ is resulting a
theoretical material speed of

v_m = 12 m/min or 20 cm/sec.

By acceleration factors $\mathbf{K} > \mathbf{2}$ and rocker mounting angles of $\mathbf{\beta} = \mathbf{30}^\circ$ (to the perpendicular line) the vertical acceleration is getting bigger than 1 g, therefore the material starts lifting from the trough bottom = material throw.

Technology

5. Maximum rocker load G, revolutions \mathbf{n}_s and angle of oscillation α

Size	ma	x. load capac	max. revolutions n _s [min ⁻¹] *				
(e.g. AU 15) K < 2		K = 2	K = 3	K = 4	$\alpha \pm 5^{\circ}$	α ± 6°	
15	100	75	60	50	640	480	
18	200	150	120	100	600	450	
27	400	300	240	200	560	420	
38	800	600	500 400		530	390	
45	1′600	1′200	1′000	800	500	360	
50	2′500	1′800	1′500	1′200	470	340	
60	5′000	3′600	3′000	2′400	440	320	

Please contact ROSTA for the permissible load indications by higher accelerations and for rocker elements offering higher load capacities. Usually are the revolutions n, between 300 to 600 min⁻¹ and the oscillation angles max. $\pm 6^{\circ}$.

The angle of oscillation α of each oscillating component (rockers accumulators and drive head) has to be settled within the permissible range (n_s and α).

Calculation oscillation anale for rockers

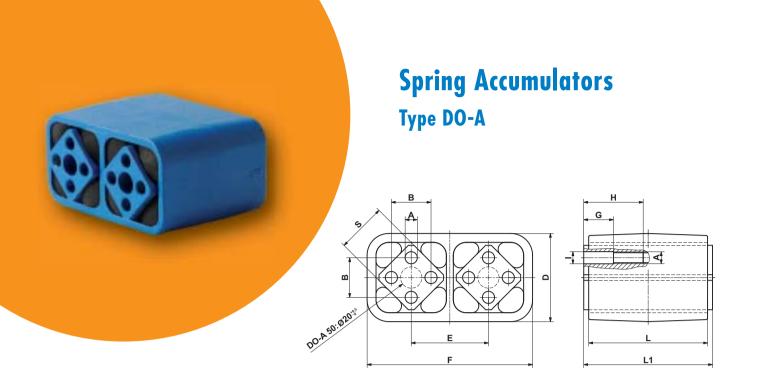
Eccentric radius R [mm] Center distance A [mm] $\alpha = \arctan\left(\frac{R}{\Delta}\right)$ Oscillation angle $\alpha \pm [\circ]$

6. Two mass shaker systems with direct reaction force-compensation

- Maximum acceleration forces of approx. 5 g, shaker lengths up to 20 meters
- Equipped with ROSTA double rockers AD-P, AD-C and/or made out of AR elements
- Ideal compensation when $m_1 = m_2$
- Element selection analogue chapter 1, but with load of the two masses: Actuated mass (+ material coupling of feeding mass) m1 [kg] Driven mass (+ material coupling of feeding mass) m2 [kg] Total oscillating mass $m = m_1 + m_2 [kg]$

$$c_d = \frac{3 \cdot Md_d \cdot 360 \cdot 1000}{2 \cdot A^2 \cdot \pi} [N/mm]$$

- Calculation of c_t and F based on the total mass $(m_1 \text{ and } m_2)$
- Power input from eccentric drive with **ST arbitrary** on m₁ or m₂ at **any point** alongside
- On demand, special double rocker arms with varying center distances A are available as "customized rockers"


The 9 installation steps for a two mass system with double rocker arms:

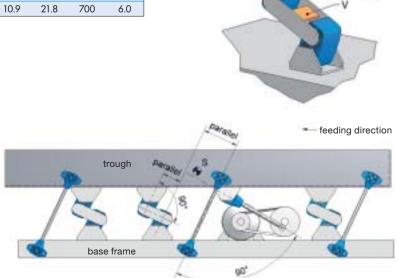
- 1. All fixation holes for the rockers in trough, counter-mass and machine frame have to be drilled very accurately previous the final machine assembling.
- 2. Installation of the middle elements of the rocker arms on the central machine frame, all inclination angles duly adjusted (e.g. 30°), tightening of the screws with required fastening torque.
- 3. Lifting of the counter-mass with accurate horizontal alignment until the bores in the counter-mass frame stay congruent with the bore holes of the lower element. Jamming of the counter-mass with e.g. wooden chocks.
- 4. Tightening of the fixation screws on counter-mass with required fastening torque.
- 5. Inserting of the feeding trough into machine frame structure. Accurate horizontal alignment until the bores in the trough stay congruent with the bore holes of the upper element. Jamming of the trough with e.g. wooden chocks.
- 6. Tightening of the fixation screws on trough with required fastening torque.
- 7. Installation of the driving rod with drive head ST in "neutral" position i.e. eccentric drive should stay in between the two stroke ends. Length adjustment of the driving rod and tightening of the counternuts.
- 8. Removal of the jamming chocks under counter-mass and trough.
- 9. Test start of the shaker conveyor.

^{*} basics: "permissible frequencies" in the Technology part of the ROSTA catalogue.

Art. No.	Туре	C, [N/mm]	А	B ± 0.5	D	Е	F	øl	□S	G	Н	L	L1_0 0.3	Weight [kg]	Material structure
01 041 013	DO-A 45 x 80	100	12+85	35	85	73	150	_	45	-	-	80	90	1.9	Light metal profile,
01 041 014	DO-A 45 x 100	125	12 %	33	63	/3	130	_	45	-	-	100	110	2.3	ROSTA blue painted
01 041 016	DO-A 50 x 120	190								30	60	120	130	5.5	Light metal profile,
01 041 019	DO-A 50 x 160	255	M12	40	ca. 89	78	ca. 168	12.25	50	30	60	160	170	7.4	nodular cast iron,
01 041 017	DO-A 50 x 200	320								40	70	200	210	8.5	ROSTA blue painted

 c_s = dynamic spring value of the complete accumulator by oscillating angle of $\pm 5^{\circ}$ and revolutions n_s between 300–600 min⁻¹ 1 spring accumulator is always consisting of 2 pcs. DO-A elements!

Operating parameters


Angle of oscillation DO-A	Accumu	lator con	s. of 2 x D	O-A 45	Accumulator cons. of 2 x DO-A 50			
(series connection)	R	R sw		max. K	R	sw	max. ns	max. K
±6°	15.3	30.6	360	2.2	16.4	32.8	340	2.1
±5°	12.8	25.6	500	3.6	13.6	27.2	470	3.4
±4°	10.2	20.4	740	6.2	10.9	21.8	700	6.0

Installation guidelines

The connection structures (forks) between the ROSTA DO-A elements have to be provided by the customer. The two side plates have to stay **right-angled** (90°) in regard to the DO-A element axis. It is recommendable to weld a cross bracing (V) between the side plates.

The two DO-A elements of the accumulator have to stay **parallel** to each other and also **parallel** to the rocker arms of the trough. Their fixation on trough and base frame shall be made by means of a stiff fork structure. The fixation of the DO-A elements (on inner element section) shall be made with shoulder studs.

Further basic information and calculations on pages 2.22-2.24.