
ROSTA

Double Suspension

Type AD-C

Art. No.	Туре	K = 2	G K=3	K = 4	n _{err}	sw	С¶	А	В	С	D	Е	Weight in kg
07 101 001 07 101 002 07 101 003 07 101 004	AD-C 18 AD-C 27 AD-C 38 △ AD-C 45	150 300 600 1200	120 240 500 1000	100 200 400 800	640 590 510 450	17 21 28 35	22 32 45 50	100 120 160 200	50 60 80 100	2.5 2.5 5	55 65 90 110	$13 \stackrel{0}{_{-0.2}}$ $16 \stackrel{+0.5}{_{+0.3}}$ $20 \stackrel{+0.5}{_{+0.2}}$ $24 \stackrel{+0.5}{_{+0.2}}$	0.84 1.84 4.09 6.08

G = max. loading in N per suspension

K = oscillating machine factor

 n_{err} = max. frequency in min⁻¹ at $<\!\!\!\!\!< 10^\circ,$ from zero $<\!\!\!\!\!< \pm 5^\circ$

sw = max. amplitude in mm

 c_d = dynamic spring value in N/mm at $\leq \pm 5^\circ$, in frequency range 300 – 600 min⁻¹

Suspensions for higher loads or asymmetric distances between centres A available on request

 \triangle available on request

Material Structure

Rocker arm made out of welded steel structure; inner square in light alloy profile.

Typical Calculation

Given:

Weight of trough	= 200 kg			
Weight of counter mass	= 200 kg			
Material on trough	= 50 kg			
of this 20% coupling effect	= 10 kg			
Total weight of oscillating mass m				
(trough, counter mass and coupling effect)	= 410 kg			
Eccentric radius R	= 14 mm			
Speed n _{err}	= 360 min ⁻¹			
(2π \2				
Ocillating machine factor $K = \frac{\left(\frac{2\pi}{60} \cdot n_{err}\right)^2 \cdot R}{9810}$	= 2.0			
9810				
Total spring value $c_t = m \cdot \left(\frac{2\pi}{60} \cdot n_{err}\right)^2 \cdot 0.001$	= 582.7 N/mm			
1914: Spring (80 mell) 2122.	002.7,			

Wanted:

Number of double rocker suspensions of size 38 for example

a) in resonance operation

Here the total spring value of the suspensions must be about 10 % above the total spring value c_t of the installation. From this follows: Spring value c_d of the rocker suspension AD 38 = 45 N/mm

Number of suspensions $z = \frac{c_1}{0.9 \cdot c_d} = \frac{582.7}{0.9 \cdot 45} = 14.4$ pieces

Selected: 14 of AD-P 38 or AD-C 38

b) without resonance operation

Here the total weight G must be taken up by the total number of rocker suspensions. The oscillating machine factor K = 2.0 must be taken into account, also the admissible loading of one AD 38 under acceleration $2\,\mathrm{g}=600\,\mathrm{N}$

Number of suspensions $z = \frac{m \cdot g}{G} = \frac{410 \cdot 9.81}{600} = 6.7$ pieces

Selected: 8 of AD-P 38 or AD-C 38